Visiting Professor Program
Academic Year 2023/2024

TEACHING COMMITMENT: 24 hours

COURSE TITLE
Materials in Optoelectronic Applications for Energy Generation

TEACHING PERIOD
1st term

SCIENTIFIC AREA
Chemistry and Material Science

LANGUAGE USED TO TEACH
English

COURSE SUMMARY
Functional organic materials are nowadays at the forefront of research in many technological applications, and in some cases, they have already entered the market. Within this module, the use of innovative organic and hybrid materials will be reviewed in their application in advanced optoelectronic devices for energy generation. Sensitized photovoltaic cells using organic and organometallic dyes, totally organic solar cells, and perovskite-based and tandem solar cells will be described. Structure-property relationships between the materials and their performances in the devices will be discussed.
LEARNING OBJECTIVES
The teaching is part of the general objective of the course to provide knowledge and skills in the field of organic, polymeric and hybrid materials for smart applications, with particular reference to the knowledge and understanding of the role of the material's design in the device performance. Specifically, within this module, learning objectives are:
- Ability to foresee and understand the role of each functional material within a specific smart application;
- Understand the functional principle of the studied devices and how they are related to technologically meaningful fields.

TUTORSHIP ACTIVITIES
The Visiting Professor may be a tutor or co-tutor in the presentation of graduate student's thesis work.

LAB ACTIVITIES
The involvement of the Visiting Professor in the research activity of the Functional Organic Materials of the Department of Chemistry, as well as in other research groups in the Department of Chemistry is encouraged.

OTHER ACTIVITIES BESIDES THE COURSE
Seminars and conferences for PhD students and research fellows will complement the teaching activities.
The teaching activity will be deepened in a course (8 hours) for PhD students within the PhD program in Chemical and Material Sciences
Title: Materials in optoelectronic applications for energy generation: Nanomaterials Codice UGOV: CHI0178
The visiting will do 2CFU in this course (the whole course is 3CFU)

ADDITIONAL COURSE

COURSE TITLE
Organic/hybrid Interphase Phenomena

TEACHING PERIOD
2nd term

SCIENTIFIC AREA
Chemistry and Material Science

LANGUAGE USED TO TEACH
English
COURSE SUMMARY
The surface is the link between a body and the environment. As such, the surface is the place where many physical and chemical phenomena take place and, in many cases, determine the behaviour of the material in practical applications.

This module's main objective is to understand the main phenomena occurring at the surfaces between organic and hybrid materials, merging physical and chemical concepts. Details on some specific applications, especially those related to the energy field, will be discussed.

LEARNING OBJECTIVES
The teaching is part of the general objective of the course to provide knowledge and skills in the field of surface phenomena.

In particular, the objectives to be reached are:
- ability to foresee and understand the physics of surface phenomena in organic and hybrid materials;
- understand the surface chemistry of different categories of organic materials and how it is related to technologically important fields like renewable energy generation.

TUTORSHIP ACTIVITIES
The Visiting Professor may be a tutor or co-tutor in the presentation of the graduate student's thesis work.

LAB ACTIVITIES
The involvement of the Visiting Professor in the research activity of the MOF and SURFIN groups of the Department of Chemistry is encouraged.

OTHER ACTIVITIES BESIDES THE COURSE
Seminars and conferences for PhD students and research fellows will complement the teaching activities.

VISITING PROFESSOR PROFILE
Multidisciplinary expertise in material science, physical chemistry, photo-electrochemistry, material electrochemistry, and renewable energy system. Experience in the optoelectronic characterization of materials, interface, and surface.

Expertise and experience in applications including optoelectronic applications, photoelectrochemistry, and electrochemistry in particular, emerging photovoltaics (Hybrid heterojunction solar cell, Dye-sensitized solar cell, Perovskite solar cell, Quantum dot solar cell, ETA solar cell, Tandem solar cell), and photoelectrode for water splitting.

FURTHER INFORMATION
Lessons and seminars could be held in co-presence with UNITO Professors.
CONTACT REFERENT
Claudia Barolo
claudia.barolo@unito.it