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In this research project, we aim at establishing a generalization of Fourier integral operators 
methods to an asymptotically Euclidean setting, continuing and extending the analysis started in 
[10, 11]. We first recall some basic elements of the theory of Fourier integral operators, see [12, 
15, 25], and then indicate the new aspects of the theory we will develope. 
 
In short, local Fourier integral operators are defined as those linear operators A, acting from the 
smooth compactly supported functions on an open subset Y to the smooth functions on an open 
subset X, whose kernels are oscillatory integrals, associated with a phase function φ and a 
symbol (amplitude) of order μ. Usually, the phase function φ satisfies a non-degeneracy 
conditions. In the latter case, A is a bounded operator between the mentioned smooth functions 
spaces, extendable to a continuous operator A: E′(Y) → D′(X). In particular, when the 
dimensions of X, Y, and the “frequency space” RN coincide, and φ(x, y, θ) = (x − y) · θ, A is a 
pseudodifferential operator of order μ. This local definition can be extended to manifolds, by 
means of the concept of Lagrangian distribution, see, e.g., [15, 23]. Namely, given two smooth, 
closed manifolds X and Y and a smooth closed conic Lagrangian submanifold Λ ⊂ T∗(X × Y ) \ 
0, an integral operator A with kernel KA ∈ Im(X × Y, Λ), the space of Lagrangian distributions 
of order m on X × Y associated with Λ, is a Fourier Integral Operator of order m if Λ ⊂ 
{(x,y,ξ,η) ∈ T∗(X ×Y) \ 0: ξ ≠ 0,η ≠ 0}. In such case, one simply writes A ∈ Im(X × Y, Λ). It 
turns out that, in local coordinates on X and Y, the kernels of the globally defined Fourier 
integral operators are given, modulo smooth remainders, by the oscillatory integrals appearing 
in the local definition above. Moreover, the non- degenerate phase function φ locally 
parametrizes Λ, in the sense that, setting  
 

Σφ = {(x,y,θ): φ′θ(x,y,θ) = 0}, 
 
the map (x,y,θ)�→ (x,y,φ′x,y(x,y,θ)) is a local homogeneous diffeomorphism of Σφ onto Λ. The 
principal symbol of A can also be invariantly defined. 
 
An important subclass of Fourier integral operators consists of all A ∈ Im(X × Y,Λ) such that Λ 
is the graph of a homogeneous symplectomorphism χ : T∗X \ 0 → T∗Y \ 0, that is, the canonical 
transformation χ commutes with multiplication by positive constants in the fiber. In this case, of 
course, dim X = dim Y. A calculus for these global operators can be established, see [15, 23]. In 
particular, a composition theorem can be proved, properties of the adjoint operators and rules 
for the computation of the principal symbols of A1 ◦ A2 and A∗ can be given as well. Other 
important aspects of the theory concern the propagation of wave front sets and the boundedness 
on different functional spaces. These can be applied to the study of the regularity of solutions of 
Cauchy problems associated with hyperbolic equations, see, for instance, the celebrated theorem 
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by A. Seeger, C.D. Sogge and E.M. Stein [22].  
 
The theory of Fourier Integral Operators is still an interesting field of active research, with 
developments in various directions, see, e.g., [2, 3, 7, 9, 16, 20, 24], and the references quoted 
therein. In the present project we deal with the class of so-called SG Fourier integral operators, 
initially considered in [5, 6], see also [1, 7, 9]. Such classes of Fourier operators naturally 
appear in the solution of Cauchy problems for hyperbolic differential operators on Rn with 
polynomially bounded coefficients.  The symbol estimates involve the global behavior also with 
respect to the x variable, namely, for any α,β ∈ Zn

+ there exists Cαβ > 0 such that, for all x,ξ ∈ 
Rn,  
 

|Dx
αDξ

βa(x,ξ)| ≤ Cαβ(1+|x|)m−|α| ( 1+|ξ|)μ−|β|, 
 
for some constants m,μ ∈ R. The aim of this project is to look for further extensions of the 
results described in the papers mentioned above.  
 
In particular, a satisfying definition of SG Fourier integral operator in terms of kernels as in the 
definitions recalled above is still missing. Such a definition would allow the extension of the SG 
Fourier integral operators theory to a natural class of manifolds where the SG calculus can be 
transferred, namely, the manifolds with ends, see [4, 8, 17]. A tool which looks very promising 
to such aim is the calculus of the subclass of the classical SG symbols. Initial results have been 
obtained in [10, 11] (see also [1, 21]). These include the analysis of a temperate version of the 
oscillatory integral kernels and of their (global) wave-front sets, see [10], as well as the 
investigation of the natural “symplectic structure at infinity” arising in this context, and the 
parametrization of the corresponding analogue of the Lagrangian submanifolds, given in [11]. 
In the latter, a main ingredient of the analysis is the differential calculus on manifolds with 
corners (cfr. [18]).  
 
More precisely, the approach pursued in [11] is a further generalization of the classical theory in 
terms of the SG calculus on Rn, focusing on the properties of the involved phase functions and 
of the corresponding generalized Lagrangian submanifolds. The advantage is that the results can 
be formulated in terms similar to the classical ones, described above, while still allowing a 
broad class of phase functions and including “singularities at infinity”. An example of a 
distribution that may be treated from this point of view is the so-called two-point function, 
arising in the study of the Klein-Gordon equation. We note that the approach of [13, 14, 17], 
which is formulated in the language of sc-geometry on asymptotically flat, or scattering, 
manifolds, while being related to the analysis in [11], is different from it. A major distinction is 
that the typical phase functions in [11] give rise to Lagrangian type singularities in all three 
components of the compactified cotangent bundle and the associated distributions are not 
smooth functions like the Legendrian distributions in [19]. In fact, the above mentioned two-
point function is not a smooth function, thus not a Legendrian distribution in the sense of [19], 
but admits Lagrangian type singularities in the interior as well as Legendrian type singularities 
at infinity, see [11] for details.  
 
In [10] a theory of tempered oscillatory integrals has been established, which may be viewed as 
the local version of distributions arising from the geometric structures “at infinity” mentioned in 
the previous paragraph. The involved objects extend the theory of classical oscillatory integrals, 
in the sense that they are tempered, and that their global singularities may be understood in 
terms of the global set of stationary points of their phase functions. The phase functions are 
assumed to be (inhomogeneous) SG symbols, whose derivatives satisfy an ellipticity condition. 
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In [11] the theory is complemented with the geometric picture, under the (natural) additional 
assumption that the phase function φ is SG classical, that is a SG symbol of order (1, 1) which 
admits polyhomogeneous expansions. We note that even in this case the distributions under 
consideration differ from Legendrian distribution. In fact, by [19, Proposition 10], the 
singularities of the Fourier transforms of Legendrian distributions on Euclidean spaces are 
contained in compact sets, a feature that is not true for the class of distributions studied in [10]. 
It is also discussed how the global set of stationary points of a non-degenerate SG classical 
phase functions form generalized Lagrangian submanifolds, which are submanifolds of a 
compactification of T∗Rn, a manifold with corners, which turns out to be the natural 
environment within which to perform this analysis. In particular, it is shown that the generalized 
Lagrangian submanifolds mentioned above can always be parametrized by SG classical phase 
functions, and examine when two such parametrizations may be regarded as equivalent.  
 
Further developments will be pursued within this project, by addressing the actual calculus of 
SG Lagrangian distributions and corresponding Fourier integral operators, with emphasis to the 
principal symbol maps and applications to hyperbolic differential equations.  
 
A useful tool to investigate singularities in Euclidean spaces is the FBI-transform. This 
transform may be used to characterize microlocal singularities by means of time-frequency 
analysis, and there are adapted version of it suitable for global calculi. In particular, it can be 
used to investigate singularities that arise in both the SG- as well as the Shubin calculus. A 
thorough understanding of conormal and Lagrangian singularities by means of such integral 
transforms, and hence applications to the theory of Fourier integral operators, remains to be 
achieved. Such topics will also be investigated within this project. 
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Profile 
Description 

It is a requested prerequisite that the visiting scientist has a strong background in microlocal 
analysis techniques, in particular on global calculi, Fourier integral operators and PDE analysis 
on noncompact settings (Rn and/or noncompact manifolds), as well as a good knowledge of 
symplectic geometry, in connection with the global theory of Fourier integral operators. It is a 
preference title to have also knowledge of the techniques related to time-frequency analysis and 
FBI-transform.  

Research 
objectives 

We aim at obtaining substantial steps ahead in the construction of a satisfactory global theory of 
Fourier integral operators on Rn and other noncompact settings.  

 
Website and 
Contact 
 

 
http://www.matematica.unito.it/do/docenti.pl/Show?_id=scorias  
sandro.coriasco@unito.it, 011-6702803 
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